Journal of Organometallic Chemistry, 94 (1975) 393-401 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

UMSETZUNG VON METHAN-BIS-(DICHLORARSIN) MIT PRIMÄREN UND SEKUNDÄREN AMINEN

F. KOBER

Fachbereich 8 der Technischen Hochschule Darmstadt, E. Zintl-Institut, 61 Darmstadt, Hochschulstr. 4 (Deutschland)

(Eingegangen den 4. Februar 1975)

Summary

The reaction of methane bis-(dichlorarsin) $H_2C(AsCl_2)_2$ with secondary amines leads to the formation of bis[bis(dialkylamino)arsino]methanes, $(R_2N)_2AsCH_2As(NR_2)_2$. The cleavage of the As—N bond with H_2O , ROH and HCI results in the formation of methane diarsine oxide $H_2C(AsO)_2$, bis[bis-(alkoxy)arsino]methanes $(RO)_2AsCH_2As(OR)_2$ and methane bis(dichloroarsine) $Cl_2AsCH_2AsCl_2$. The reaction of primary amines with $H_2C(AsCl_2)_2$ produces the tetra-N-alkyl-2,4,6,8-tetraaza-1,3,5,7-tetraarsaadamantanes, $As_4(NR)_4$ - $(CH_2)_2$. The IR, ¹H NMR and mass-spectral data are presented and discussed.

Zusammenfassung

Die Reaktion des Methan-bis-(dichlorarsins) $H_2C(AsCl_2)_2$ mit sekundären Aminen führt zu Bis-[bis-(dialkylamino)-arsino]-methanen $(R_2N)_2AsCH_2As$ - $(NR_2)_2$. Die Spaltung der As-N-Bindung mith H_2O , ROH und HCl führt zu Methan-diarsenoxid $H_2C(AsO)_2$, Bis-[bis-(alkoxy)-arsino]-methanen $(RO)_2As$ - $CH_2As(OR)_2$ und Methan-bis-(dichlorarsin) $Cl_2AsCH_2AsCl_2$. Die Umsetzung primärer Amine mit $H_2C(AsCl_2)_2$ führt zu Tetra-N-alkyl-2,4,6,8-tetraaza-1,3, 5,7-tetraarsa-adamantanen $As_4(NR)_4(CH_2)_2$. Die IR-, ¹H-NMR- und Massen-Spektren werden mitgeteilt und diskutiert.

Einleitung

Durch Umsetzung von Methan-bis-(methylchlorarsin) $H_2C[As(CH_3)Cl]_2$ mit sekundären Aminen entstehen die Bis-(dialkylamino-methyl-arsino)methane $R_2NAs(CH_3)CH_2As(CH_3)NR_2$, die als typisches Strukturelement die Gruppierung $>NAsCH_2AsN<$ enthalten [1].

Die vorliegende Arbeit beschreibt die Umsetzung des ähnlich gebauten Methan-bis-(dichlorarsins) $H_2C(AsCl_2)_2$ mit primären und sekundären Aminen. Ergebnisse

Methan-bis-(dichlorarsin) setzt sich mit sekundären Aminen nach Gl. 1 zu Bis-(bis-dialkylamino-arsino)-methanen um.

 $H_2C(AsCl_2)_2 + 8 HNR_2 \rightarrow (R_2N)_2AsCH_2As(NR_2)_2 + 4 (NR_2H_2)Cl$ (1)

 $(R = CH_3, C_2H_5, n$ -Propyl, n-Butyl, Butyl-2-,

 $NR_2 = Pyrrolidinyl, Piperidinyl)$

Die Komponenten sind derart reaktiv, dass die Umsetzungen bei -30° C durchgeführt werden können. Trotzdem sind die Ausbeuten gering, der Anteil der nichtdestillierbaren, polymeren Produkte bleibt sehr gross. Die Umsetzungsprodukte von Diiso-proylamin, Morpholin und Dialkylamin zersetzen sich bei der Destillation.

Die Arsino-methane sind extrem hydrolyseempfindliche Flüssigkeiten, die an der Luft "rauchen" und sich sofort mit einer Schicht von $H_2C(AsO)_2$ überziehen. Die Elementaranalysen und Molmassebestimmungen liefern deshalb keine sehr guten Werte, jedoch werden die Molekülstrukturen durch IR- und NMR-Spektren sowie vor allem durch Umsetzung mit H_2O , R'OH (R' = CH₃, C_2H_5) und HCl bestätigt. Dabei entstehen nach Gl. 2,3 und 4 das Methandiarsenoxid $H_2C(AsO)_2$, die Bis-[bis-(alkoxy)arsino]-methane $H_2C[As(OR)_2]_2$ und Methan-bis-(dichlorarsin) $H_2C(AsCl_2)_2$.

$$(R_2N)_2AsCH_2As(NR_2)_2 + 2 H_2O \rightarrow OAsCH_2AsO + 4 HNR_2$$
(2)

 $(R_2N)_2AsCH_2As(NR_2)_2 + 4 R'OH \rightarrow (R'O)_2AsCH_2As(OR')_2 + 4 HNR_2$ (3)

 $(R_2N)_2AsCH_2As(NR_2)_2 + 8 HCl \rightarrow Cl_2AsCH_2AsCl_2 + 4 (NR_2H_2)Cl$ (4)

Die Ester $H_2C[As(OR')]_2$ sind nicht so hydrolyseempfindlich wie die Amine und liefern bei der Elementaranalyse und Molmassebestimmung ausgezeichnete Werte. Ihre Darstellung gelingt auch, allerdings mit kleinerer Ausbeute, durch Umsetzung von $H_2C(AsCl_2)_2$ mit Alkoholat in alkoholischer Lösung nach Gl. 5.

 $H_2C(AsCl_2)_2 + 4 \text{ RONa} \rightarrow (RO)_2AsCH_2As(OR)_2 + 4 \text{ NaCl}$ (5)

Alle nach Gl. 1 und 3 präparierten Verbindungen sind in Tabelle 1 zusammengefasst.

Mit primären Aminen setzt sich das Methan-bis-(dichlorarsin) nach Gl. 6 zu Tetra-N-alkyl-2,4,6,8-tetraaza-1,3,5,7-tetraarsa-adamantanen As₄(NR)₄(CH₂) mit Molekülstruktur I um.

$$2 H_2C(AsCl_2)_2 + 12 H_2NR \rightarrow As_4(NR)_4(CH_2)_2 + 8 (NRH_3)Cl$$
 (6)

 $(R = CH_3, C_2H_5, n-Propy!, iso-Propy!, n-Buty!, iso-Buty!)$

394

TABELLE 1. SIEDEPUNKTE UND SPEKTROSKOPISCHE DATEN DER VERBINDUNGEN (R₂N)₂A₅CH₂-A₅(NR₂)₂ UND (RO)₂ A₅CH₂A₅(OR)₂

$\mathbf{R} = \mathbf{CH}_3$	Sdpkt. 105° C/0.2 Torr				
α	¹ H-NMR-Spektrum: δ(α) = 2.6 Singulett IR-Spektrum: 2960 s, 2900 (sh), 2870 ss, 2840 (sh), 2820 ss, 2780 ss, 1460 ss, 1440 ss, 1240 s, 1180 ss, 1150 (sh), 1050 s, 950 ss, 935 ss, 600 s, 550 s.				
$R = CH_2CH_3$ $\alpha \beta$	Sdpkt. 120°C/0.2 Torr ¹ H-NMR-Spektrum: $\delta(\alpha) = 2.9$ Quartett $\delta(\beta) = 1.0$ Triplett IR-Spektrum: 2980 ss, 2940 s, 2880 s, 2840 ss, 2790 s, 1480 s, 1460 w, 1400 s, 1290 w, 1180 s, 1155 w, 1095 w, 1045 w, 1000 s,				
	915 w, 870 w, 805 w, 785 w, 590 s.				
$R = CH_2CH_2CH_3$ $\alpha \beta \gamma$	Sdpkt. 120°C/0.3 Torr ^a ¹ H-NMR-Spektrum: $\delta(\alpha) = 3.0$ Triplett $\delta(\beta) = 1.5$ Septett $\delta(\gamma) = 0.8$ Triplett IR-Spektrum: 2960 ss, 2930 (sh), 2870 ss, 1460 ss, 1420 s, 1380 ss, 1250 s, 1170 ss, 1090 w, 1040 s, 960 ss, 800 w, 750 w, 650 s.				
$CH_2 - CH_2$ NR ₂ = N	Sdpkt. 130°C/0,2 Torr ^a				
$CH_2 - CH_2$ $\alpha \beta$	¹ H-NMR-Spektrum: $\delta(\alpha) = 3.0$ 3 Signale $\delta(\beta) = 1.7$ 5 Signale				
	IR-Spektrum: 2920 ss, 2980 ss, 2800 ss, 1440 ss, 1370 ss, 1350 w, 1320 w, 1310 w, 1300 w, 1270 s, 1210 s, 1200 (sb), 1055 s, 1020 ss, 900 ss, 850 s, 820 s, 805 w, 650 s, 620 s, 500 s.				
$NR_2 = N \underbrace{CH_2 - CH_2}_{CH_2 - CH_2} CH_2$	Sdpkt. 140°/0.9 Torr ^a ¹ H-NMR-Spektrum: $\delta(\alpha) = 2.8$ breites Singulett				
α β	0(b) = 1.5 brettes Singulett IR-Spektrum: 2940 ss, 2860 ss, 2740 w, 1540 ss, 1370 ss, 1330 s, 1320 ss, 1270 s, 1250 w, 1210 ss, 1200 (sh), 1140 ss, 1115 ss, 1100 (sh), 1050 (sh), 1020 ss, 900 ss, 850 ss, 820 s, 740 s, 600 ss, 500 s.				
$R = CH_2CH_2CH_2CH_3$	Sdpkt. 130°C/0.6 Torr ^a ¹ H-NMR-Spektrum: $\delta(\alpha) = 3.0$ 3 Signale $\delta(\beta) = 1.5$, 1.0 Multipletts IR-Spektrum: 2950 ss, 2850 ss, 1470 ss, 1470 ss, 1450 (sh), 1380 ss, 1300 w, 1260 s, 1230 s, 1160 ss, 1100 (sh), 1090 s, 1020 ss, 910 ss, 850 s, 800 s, 760 ss.				
$R = \int_{-C-H\alpha}^{CH_3\beta}$	Sdpkt. 100°C/0.2 Torr ^a ¹ H-NMR-Spektrum: $\delta(\alpha) = 3.6$ Multiplett $\delta(\beta) = 1.3$ Multiplett IR-Spektrum: 2960 ss, 2920 ss, 2870 s, 1590 s, 1460 (sh),1450 ss,				
$\beta \beta$	1380 ss, 1310 w, 1260 w, 1210 w, 1170 s, 1130 s, 1100 ss. 1040 s, 1030 s, 980 s, 935 w, 910 s, 900 (sb), 820 w, 800 w, 760 w, 750 w, 620 w, 560 s, 490 s.				
$\begin{array}{c} As(OCH_3)_2 \\ H_2C \\ As(OCH_3)_2 \\ \beta \\ \alpha \end{array}$	Sdpkt. 83°C/1 Torr ¹ H-NMR-Spektrum: δ(α) = 3.5 Singulett δ(β) = 2.2 breites Singulett IR-Spektrum: 2960 (sh), 2930 ss, 2880 (sh), 2820 ss, 1460 ss, 1440 ss, 1360 w, 1180 s, 1100 ss, 1040 ss, 910 s, 600 ss.				
$\begin{array}{c} As(OCH_2CH_3)_2\\ H_2C\\ As(OCH_2CH_3)_2\\ \gamma \qquad \alpha \qquad \beta \end{array}$	Sdpkt. 115°C/0.5 Torr ¹ H-NMR-Spektrum: $\delta(\alpha) = 3.5$ Quartett $\delta(\beta) = 1.2$ Singulett $\delta(\gamma) = 2.0$ Singulett J = 8 Hz $\delta(\gamma) = 2.0$ Singulett IR-Spektrum: 2980 ss, 2950 s, 2870 s, 1480 w, 1450 w, 1390 ss, 1106 s, 1100 ss, 1050 ss, 900 s, 610 ss.				

^a Die angegebene Temperatur ist die bei der Destillation in A des in Fig. 2 gezeigten Geräts eingestellte Bad-Temperatur. Alle Verbindungen sind in Tabelle 2 zusammengestellt.

Mit t-Butyl, Butyl-2-, Cyclohexyl-amin und Anilin tritt zwar eine an der Ammonsalzbildung erkennbare Umsetzung ein, die entstehenden Aza-arsaadamantane zersetzen sich aber bei der Destillation bzw. sind nicht-flüchtige Polymere.

TABELLE 2

SIEDEPUNKTE UND SPEKTROSKOPISCHE DATEN DER As4(NR)4(CH2)2-VERBINDUNGEN

$\mathbf{R} = \mathbf{C}\mathbf{H}_3$	Sdpkt. 130°C/0.1 Torr				
æ	⁴ H-NMR-Spektrum: $\delta(\alpha) = 2.9$ Singulett				
	1000000000000000000000000000000000000				
	1090 ss, 1040 ss, 775 ss, 740 ss, 690 s, 470 w.				
$\mathbf{R} = \mathbf{CH}_2\mathbf{CH}_3$	Sdpkt. 140°C/0.1 Torr				
α β	¹ H-NMR-Spektrum: $\delta(\alpha) = 3.1$ Quartett } $J = 7$ Hz				
	$\delta(\beta) = 1.2 \text{ Triplett}$				
	$O(CH_2) = 1.7$ Singulati ID Spatterim: 2070 cc 2050 c 2000 c 2850 cc 1460 cc 1380 cs				
	1360 ss. 1310 ss. 1300 s. 1150 s. 1100 ss. 1050 ss. 900 s. 830 ss. 820 s.				
	725 ss, 890 w, 480 w.				
$\mathbf{R} = \mathbf{CH}_2\mathbf{CH}_2\mathbf{CH}_3$	Sdpkt. 180°C/0.6 Torr				
αβγ	¹ H-NMR-Spektrum: $\delta(\alpha) = 3.1$ Triplett				
<u>.</u>	$\delta(\beta) = 1.5 \text{ Septett} \qquad J = 8 \text{ Hz}$				
	$\delta(\gamma) = 0.9 \text{ Triplett}$				
	100017 = 1.0 Singular IR-Spektrum: 2970 ss. 2940 ss. 2910 (sh). 2890 ss. 2840 ss. 1470 ss.				
	1460 s, 1380 ss, 1360 ss, 1350 s, 1250 w, 1150 w, 1100 ss, 1070 ss,				
	1020 w, 990 s, 910 s, 895 s, 785 s, 765 s, 725 ss, 690 ss, 550 w, 520 w.				
$R = CH(CH_3)_2$	Sdpkt. 130°C/0.1 Torr				
αβ	¹ H-NMR-Spektrum: $\delta(\alpha) = 3.6$ Septett J = 8 Hz				
	$\delta(\beta) = 1.3 \text{ [Jubien]}$				
	18-Spektrum: 2980 ss. 2920 ss. 2890 ss. 2870 ss. 1480 ss. 1390 ss. 1300 ss. 13000 ss. 13000 ss. 13000 ss. 13000				
	1380 ss, 1370 (sh), 1320 s, 1170 s, 1135 ss, 980 s, 820 s, 790 ss, 690 ss.				
$R = CH_2CH_2CH_2CH_3$	Sdpkt. 184°C/0.1 Torr				
	¹ H-NMR-Spektrum: $\delta(\alpha) = 3.3$ Multiplett				
	$\delta(\beta) = 1.5$ Multiplett				
	$\delta(\gamma) = 0.9 \text{ Multiplett}$				
	18-Spektrum: 2970 ss. 2920 ss. 2880 ss. 2840 ss. 1470 ss. 1460 (sb).				
	1390 ss. 1370 s. 1360 (sh), 1310 s. 1300 w. 1260 w. 1230 s. 1160 s.				
	1140 s, 1100 s, 1070 s, 1030 s, 990 s, 965 s, 945 (sh), 900 w, 860 w,				
	830 s, 810 ss, 730 ss, 690 ss, 540 s, 460 w.				
СН3					
	Sdnkt 185°C/0.8 Torr				
	¹ H-NMR-Spektrum: $\delta(\alpha) = 3.2$ Dublett $J = 8$ Hz				
a CH3	$\delta(\beta) = 0.9$ Dublett $J = 8$ Hz				
ß	$\delta(\gamma) = 1.8$ Multiplett				
•	$\delta(CH_2) = 1.9$ Singulett				
	IR-Spektrum: 2960 (sh), 2950 ss, 2940 (sh), 2890 ss, 2870 ss, 2830 s,				
	14 (U 55, 1400 (51), 1000 55, 1000 5, 1000 5, 1200 5, 1200 5, 1100 5, 1100 m 1060 m 955 w 940 m 910 m 900 w 775 m 740 m 690 m				
	560 ss. 520 w. 460 w.				

Struktur I kann aufgefasst werden werden als As- bzw. NR-substituiertes Adamantan oder als Derivat des As_4O_6 , in dem die über den Kanten des As_4 -Tetraeders stehenden O-Atome durch CH_2 - und NR-Gruppen substituiert sind.

Den einfachsten Vertreter dieser Klasse, das $As_4(NCH_3)_4(CH_2)_2$, hatte Sommer durch Umsetzung von Heptamethyldisilazan mit Methan-bis-(dichlorarsin) erhalten aber nicht näher untersucht [2].

Für Molekülstruktur I sprechen Molekulargewicht, Elementaranalyse, IR-, ¹H-NMR- und Massen-Spektren. Ausserdem bestätigte an ähnlichen Aza-arsaadamantanen die Röntgenstruktur-Analyse die Adamantanstruktur [3-8].

IR- und ¹H-NMR-Spektren. Die IR- und ¹H-NMR-Spektren zeigen die für die jeweiligen, funktionellen Gruppen typischen Banden bzw. Signale. Im ¹H-NMR-Spektrum der Arsino-methane ist das Signal der AsCH₂As-Protonen ein breites, schlecht aufgespaltenes Multiplett bei $\delta \cong 2.0$. Bei den Arsinen mit höheren Aminresten geht es aus Intensitätsgründen im Rauschen unter. Das CH₂-Signal der Adamantane ist ein scharfes Singulett. Vergl. Tabelle 1 und 2.

Massenspektren. Die Massenspektren wurden auf einem Gerät Finnigan 3100D bei 5 und 70 eV Ionisierungsenergie aufgenommen. Die Auswertung ergab: (a) Das Molekülion tritt immer als Peak höchster Intensität auf. (b) Der Abbau verläuft bei allen Spektren nach dem gemeinsamen Schema von Gl. 7.

$$\geq$$
NCH₂R $\xrightarrow{-R} \geq$ NCH₂ $\xrightarrow{-C} \geq$ NH₂ $\xrightarrow{-NH_2}$ Ringöffnung

Unter Abspaltung von R entsteht bei Erhalt der Adamantanstruktur das =NCH₂⁺-Ion, das unter Eliminierung von C in das =NH₂⁺ übergeht. Dieses eliminiert NH₂, wobei die Adamantanstruktur aufbricht und ein Achtring entsteht. Fig. 1 zeigt als Beispiel den Abbau des As₄(NR)₄(CH₂)₂ mit R = CH₂CH₂CH₂.

Die Spektren der Aza-arsa-adamantane sind in Tabelle 3 zusammengefasst. Angegeben sind die Massen, die zuzuordnenden Zusammensetzungen und die relativen Intensitäten der Peaks. Die Bezeichnung A bzw. R gibt an, ob das Bruchstückion Adamantan- oder Achtring-Struktur hat. Niedere Massen, die Bruchstücke wie NCH₂AsCH⁺₂, CH₂AsCH⁺₂, AsCH⁺₂ oder Bruchstücke der Aminreste sind , sind nich tabelliert. Aufnahmebedingungen: Probe 100°C, Quelle 150°C, Ionisierungsenergie 5 eV.

Experimenteller Teil

Das Methan-bis-(dichlorarsin) wird durch Umsetzung von Acetylchlorid und wasserfreiem Aluminiumchlorid mit As_2O_3 bei 180°C erhalten [2,9,10].

Zur Umsetzung mit den sekundären Aminen wird das Chlorid in Åther vorgelegt und eine ätherische Lösung des Amins unter Rühren bei -30°C zugetropft. Sofort fallen Ammonsalze aus, die nach beendeter Reaktion abfiltriert werden. Man destilliert den Äther ab und reinigt die Produkte durch Vakuumdestillation. Da bei Destillation mit Brücke immer Zersetzungsprodukte auftreten, wird die in Figur 2 gezeigte Apparatur verwendet. In A wird das Rohprodukt vorgelegt und die Apparatur über Schliff B evakuiert. A wird im Olbad auf Siedetemperatur gebracht, wobei das Destillat an dem mit Methanol/Trockeneis gekühlten Finger C kondensiert und in die Vorlage D abläuft. Die trichterartige Erweiterung E verhindert, dass Blasen aus A an das

(7)

'ig. 1. Massenspektrometrischer Abbau des As4(NR)4(CH2)2(R = CH2CH2CH3, ● = As).

TABELLE 3

MASSENSPEKTREN DER TETRA-N-ALKYL-2,4,6,8-TETRAAZA-1,3,5,7-TETRAARSA-ADAMAN-TANE⁴

$As_4(NR)_4(CH_2)_2 R = CH_3$

444 As4(NR)4(CH₂)2 100% A 431 As4(NR)3NH2(CH₂)2 35% A 418 As4(NR)2(NH₂)2(CH₂)2 25% A

$As_4(NR)_4(CH_2)_2 R = CH_2CH_3$

 $As_4(NR)_4(CH_2)_2$ 100% A $As_4(NR)_3NCH_2(CH_2)_2$ 10% A $As_4(NR)_3NH_2(CH_2)_2$ 10% A $As_4(NR)_2NCH_2NH_2(CH_2)_2$ 10% A $As_4(NR)_3(CH_2)_2$ 10% R $As_4(NR)_2(NH_2)_2(CH_2)_2$ 10% R $As_4(NR)_2NCH_2(CH_2)_2$ 10% R

$As_4(NR)_4(CH_2)_2 R = CH_2CH_2CH_3$

556 As₄(NR)₄(CH₂)₂ 100% A 527 As₄(NR)₃NCH₂(CH₂)₂ 20% A 515 As₄(NR)₃NH₂(CH₂)₂ 18% A 486 As₄(NR)₂NCH₂NH₂(CH₂)₂ 11% A 499 As₄(NR)₃(CH₂)₂ 10% R 470 As₄(NR)₂NCH₂(CH₂)₂ 10% R $A_{54}(NR)_4(CH_2)_2 R = CH_2CH(CH_3)_2$

399

612 As₄(NR)₄(CH₂)₂ 100% A 569 As₄(NR)₃NCH₂(CH₂)₂ 57% A 557 As₄(NR)₃NH₂(CH₂)₂ 51% A 541 As₄(NR)₃(CH₂)₂ 25% R 514 As₄(NR)₂NCH₂NH₂(CH₂)₂ 42% A 498 As₄(NR)₂NCH₂(CH₂)₂ 20% R 459 As₄NRNH₂NCH₂(CH₂)₂ 10% A

$As_4(NR)_4(CH_2)_2 R = CH_2CH_2CH_2CH_3$

 $As_4(NR)_4(CH_2)_2$ 100% A $As_4(NR)_3NCH_2(CH_2)_2$ 24% A $As_4(NR)_3NH_2(CH_2)_2$ 55% A $As_4(NR)_3(CH_2)_2$ 11% R $As_4(NR)_2NCH_2NH_2(CH_2)_2$ 22% A $As_4(NR)_2NCH_2(CH_2)_2$ 10% R $As_4NRNCH_2(NH_2)_2(CH_2)_2$ 15% A $As_4NRNCH_2NH_2(CH_2)_2$ 10% R

 $As_4(NR)_4(CH_2)_2 R = CH(CH_3)_2$

556 As4(NR)4(CH₂)₂ 100% A 541 As4(NR)₃NCHCH₃(CH₂)₂ 35% A 515 As4(NR)₃NH₂(CH₂)₂ 15% A 499 As4(NR)₃(CH₂)₂ 10% R 484 As4(NR)₂NHCH₃(CH₂)₂ 5% R

^a A bzw. R geben an, ob das Bruchstückion Adamantan oder Achtring-Struktur hat.

Kondensat spritzen. Bei den in Tabelle 1 mit a gekennzeichneten Siedepunkten ist die angegebene Temperatur die bei der Destillation in A eingestellte Bad-Temperatur. Zur Umsetzung der primären Amine wird das H₂C(AsCl₂)₂ in Benzol vorgelegt

Fig. 2. Gerät zur Destillation der (R2N)2AsCH2As(NR2)2-Verbindungen (Erläuterungen siehe Text).

400 -

TABELLE 4

ERGEBNISSE DER C,H,N-ANALYSEN UND MOLEKULARGEWICHTSBESTIMMUNGEN

Arsin	Analyse Gef. (ber.) (%)			Molekulargewicht Gef. (ber.)	
	С	Ħ	N	<u> </u>	•
C ₆ H ₁₆ As ₄ N ₄	16.2 (16.6)	3.6 (3.7)	12.6 (12.6)	443.9 (440)	
C ₁₀ H ₂₄ As ₄ N ₄	24.0 (24.1)	4.8 (4.7)	11.2 (11.5)	500.0 (512)	
C ₁₄ H ₃₂ As ₄ N ₄ n-Propyl	30.2 (29.8)	5.7 (5.4)	10.0 (9.8)	556.1 (586)	
C ₁₄ H ₃₂ As ₄ N ₄ iso-Propyl	30.2 (30.1)	5.7 (5.5)	10.0 (9.6)	556.1 (580)	
C ₁₈ H ₄₀ As ₄ N ₄ n-Butyl	35.3 (35.0)	6.5 (6.8)	9.1 (9.0)	612.2 (610)	
C ₁₈ H ₄₀ As ₄ N ₄ iso-Butyl	35.3 (35.8)	6.5 (6.1)	9.1 (8.9)	612.2 (608)	
C9H26As2N4	31.7 (31.2)	7_7 (7.8)	16.4 (15.9)	340.1 (352)	
C ₁₇ H ₄₂ As ₂ N ₄	45.1 (45.9)	9.3 (9.8)	12.3 (13.0)	452.3 (480)	
C ₂₅ H ₅₈ As ₂ N ₄	53.1 (53.9)	10.3 (9.7)	9.9 (9.2)	564.5 (599)	
C ₁₇ H ₃₄ As ₂ N ₄	45.8 (46.5)	7.7 (7.3)	12.6 (13.0)	444.3 (465)	
$\mathbf{C_{21}H_{42}As_2N_4}$	50.4 (50.9)	8.4 (8.8)	29.9 (30.5)	500.4 (520)	
C ₃₃ H ₇₄ As ₂ N ₄ n-Butyl	58.5 (58.9)	11.0 (11.7)	8.2 (8.8)	676.8 (690)	
C33H74As4N4 Butyl-2-	58.5 (57_8)	11.0 (11.6)	8.2 (8.7)	676.8 (610)	
C ₅ H ₁₄ As ₂ O ₄	20.8 (21.1)	4.9 (4.9)		287.9 (280)	
C9H22As2O4	31.4 (31.4)	6.4 (6.4)		344.0 (350)	

und das Amin bei 0°C unter Rühren zugetropft bzw. eingeleitet. Sofort fallen Ammonsalze aus, die nach beendeter Reaktion abfiltriert werden. Die Produkte werden durch Vakuumdestillation bzw. Sublimation isoliert. Zur Umsetzung mit ROH, H₂O und HCl werden die H₂C[As(NR₂)₂]₂-Verbindungen in Ather vorgelegt und die acide Komponente unter Rühren zugetropft. bzw. eingeleitet, zuletzt die Produkte durch Vakuumdestillation isoliert.

Die CHN-Analysen wurden auf einem automatischen Gerät Elemental Analyzer 240 der Firma Perkin—Elmer bestimmt, die Molekulargewichte osmometrisch mit einem Gerät der Firma Knauer. Berechnete und gefundene Werte sind in Tabelle 4 zusammengefasst.

Dank

Herrn Prof. Dr. J. Grobe danke ich für seine Anregungen und Diskussionen sowie der Unterstützung der Arbeit durch Mittel des Institutes.

Herrn Dr. L. Zimmer danke ich für die Aufnahme der Massenspektren sowie die Hilfe bei ihrer Interpretation. Der Deutschen Forschungsgemeinschaft danke ich für die finanzielle Unterstützung der Arbeit.

401

Literatur

1 F. Kober, Z. Anorg. Allg. Chem., 412 (1975) 202.

- 2 K. Sommer, Z. Anorg. Allg. Chem., 377 (1970) 120.
- 3 H.J. Vetter und H. Nöth, Angew. Chem., 74 (1962) 943.
- 4 D. Hass, Z. Anorg. Allg. Chem., 325 (1963) 139.
- 5 D. Hass, Z. Anorg. Allg. Chem., 326 (1963) 192.
- 6 H.J. Vetter, H. Nöth und W. Jahn, Z. Anorg. Allg. Chem., 328 (1964) 144.
- 7 J. Weiss und W. Eisenhuth, Z. Naturforsch. B, 22 (1967) 454.
- 8 J. Weiss und W. Eisenhuth, Z. Anorg. Allg. Chem., 350 (1967) 9.
- 9 F. Popp, Chem. Ber., 82 (1949) 152.
- 10 H. Guthbier und H.G. Plust, Chem. Ber., 88 (1955) 1777.